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Abstract
We study the point-contact tunnelling between a normal metal and a
ferromagnetic superconductor. In the case of magnon-induced pairing the
tunnelling conductance is a continuous and smooth function of the applied
voltage. For small values of the applied voltage the Ohm law holds. We
show that one can obtain the magnetization and the superconducting order
parameter from the tunnelling conductance. In the case of paramagnon-induced
superconductivity the tunnelling does not depend on the magnetization. We
argue that the tunnelling experiment can unambiguously determine the correct
pairing mechanism in the ferromagnetic superconductors.

The discovery of unconventional superconductivity caused an explosive growth of activities
in various fields of condensed-matter research, stimulating studies of the basic mechanisms
leading to this phenomenon. The most direct way to identify the Cooper pairs is from
measurements of their spin susceptibility, which can be determined by the Knight shift,
from measurements of nuclear spin-lattice relaxation rate 1/T1, probed by nuclear magnetic
resonance and nuclear quadrupole resonance, and by electron tunnelling.

In conventional superconductors, the quasi-particles form Cooper pairs in a spin-singlet
state which has zero total spin. The existence of the gap in the quasi-particle spectrum leads
to unusual properties of the systems:

(i) the specific heat decreases exponentially at low temperature, as opposed to the linear
temperature dependence in the Fermi liquid theory;

(ii) the normal metal superconductor tunnelling experiments show that the electrons from the
normal side of the junction can tunnel through and become an excited quasi-particle on
the superconducting side if the applied voltage is larger than the gap [1].

All these properties are well understood on the basis of the BCS theory of superconductivity.
The discovery of superconductivity in a single crystal of UGe2 [2], URhGe [3] and

ZrZn2 [4] revived the interest in the coexistence of superconductivity and ferromagnetism.
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The experiments indicate that the superconductivity is confined to the ferromagnetic phase,
the ferromagnetic order is stable within the superconducting phase (neutron scattering
experiments), and the specific heat anomaly associated with the superconductivity in these
materials appears to be absent. The specific heat depends on the temperature linearly at low
temperature.

At ambient pressure UGe2 is an itinerant ferromagnet below the Curie temperature
Tc = 52 K, with low-temperature ordered moment of µs = 1.4 µB/U. With increasing pressure
the system passes through two successive quantum phase transitions, from ferromagnetism to
ferromagnetic superconductivity at P ∼ 10 kbar, and at higher pressure Pc ∼ 16 kbar to
paramagnetism [2, 5]. At the pressure where the superconducting transition temperature is a
maximum Tsc = 0.8 K, the ferromagnetic state is still stable with Tc = 32 K. The survival
of bulk ferromagnetism below Tsc has been confirmed directly via elastic neutron scattering
measurements [5]. The specific heat coefficient γ = C/T increases steeply near 11 kbar and
retains a large and nearly constant value [6].

Specifically, UGe2 has strong spin–orbit interaction that leads to an unusually
large magneto-crystalline anisotropy with an easy magnetization axis along the shortest
crystallographic axis.

The ferromagnets ZrZn2 and URhGe are superconducting at ambient pressure with
superconducting critical temperatures Tsc = 0.29 K [4] and Tsc = 0.25 K [5] respectively.
ZrZn2 is ferromagnetic below the Curie temperature Tc = 28.5 K with low-temperature ordered
moment of µs = 0.17 µB per formula unit, while for URhGe Tc = 9.5 K and µs = 0.42 µB.
The low Curie temperatures and small ordered moments indicate that compounds are close to
a ferromagnetic quantum critical point.

We shall discuss two mechanisms of Cooper pairing in ferromagnetic metals:
superconductivity induced by longitudinal spin fluctuations [7] and the magnon exchange
mechanism of superconductivity [8]. In the case of paramagnon induced superconductivity [7]
the order parameters are spin parallel components of the spin triplet. The theory predicts
that spin up and spin down fermions form Cooper pairs, and hence the specific heat
decreases exponentially at low temperature. The phenomenological theories [9] circumvent
the problem assuming that only majority spin fermions form pairs, and hence the minority spin
fermions contribute the asymptotic of the specific heat. The magnon exchange mechanism
of superconductivity was developed [8] to explain in a natural way the fact that the
superconductivity in UGe2, ZrZn2 and URhGe is confined to the ferromagnetic phase. The
order parameter is a spin anti-parallel component of a spin-1 triplet with zero spin projection
(↑↓ + ↓↑). The onset of superconductivity leads to the appearance of Fermi surfaces in the
spin up and spin down momentum distribution functions. As a result, the specific heat depends
on the temperature linearly, at low temperature.

During the last years tunnelling spectroscopy has been applied to identify the pairing
symmetry. The most basic idea of tunnelling spectroscopy was first proposed by Bardeen [10]
who introduced the tunnel Hamiltonian approximation for describing a tunnel junction. The
concept of the tunnelling Hamiltonian [11] became universally adopted for the discussion of
tunnelling in superconductors. The idea is to write the Hamiltonian as a sum of three terms

H = HL + HR + HT. (1)

The first two terms HL and HR are considered to be independent, expressed in terms of two
independent sets of Fermi operators ck,σ , c+

k,σ and dq,σ , d+
q,σ , where σ = (↑,↓). Tunnelling is

caused by the term HT

HT =
∑
k,q,σ

[
tk,q c+

k,σ dq,σ + t∗
k,q d+

q,σ ck,σ

]
. (2)
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The tunnelling matrix element tk,q describes the transfer of the particle through the junction.
In this paper we focus our attention on the point contact case, therefore it is assumed that tk,q

depends only on the wavevectors on the two sides k and q . The tunnelling takes place over
a very narrow span of energies near the Fermi surfaces of the ‘left’ and ‘right’ systems, that
is why it is an adequate approximation to treat the transfer rate tk,q as a constant which is
evaluated at kF and qF (tqF,kF = t∗

qF,kF
= t).

We consider the tunnelling process from a normal metal to a ferromagnetic superconductor.
HL is the Hamiltonian of the system of free spin 1/2 fermions with dispersion εk = k2

2m − µ,
HL = ∑

k,σ εkc+
kσ ckσ , and HR is the Hamiltonian for the ferromagnetic superconductor. For

the magnon-induced superconductivity it has the form

HR =
∑
k,σ

εkσ d+
kσ dkσ +

∑
k

�k
[
dk↑d−k↓ + dk↓d−k↑ + d+

−k↑d+
k↓ + d+

−k↓d+
k↑

]
(3)

while for paramagnon-induced superconductivity it is

HR =
∑
k,σ

εkσ d+
kσ dkσ + 1

2

∑
k

�k
[
dk↑d−k↑ + d+

−k↑d+
k↑

]
. (4)

In equations (3), (4) εk↑ = k2

2m − µ − H and εk↓ = k2

2m − µ + H , where H is the energy of
the Zeeman splitting, which is proportional to the low temperature ordered moment. There is
a symmetry relation for the gap function �k which follows from the anti-commutation of spin
1/2 fermions �−k = −�k . The gap has the form �k = �0 cos θk [7, 8].

The strong spin–orbit coupling in UGe2 and URhGe requires a pseudo-spin technique [12].
The spin rotations, in that case, are accompanied by a rotation in momentum space. Hence if
we consider tunnelling process from a normal metal to a ferromagnetic superconductor, the
tunnelling Hamiltonian is invariant if and only if the tunnelling matrix element is a constant.
This approximation is widely accepted, but in our case it is crucial for the applicability of the
tunnelling Hamiltonian.

Next we calculate the current through the tunnel junction. It is defined as

I = −e

〈
d

dτ

∑
k,σ

c+
k,σ ck,σ

〉
. (5)

The tunnelling current can be presented in the form

I = et
∑
k,q,σ

[〈〈dqσ , c+
kσ 〉〉< (τ, τ ) − 〈〈ckσ , d+

qσ 〉〉< (τ, τ )
]

(6)

where we have introduced the Green function in the Keldysh representation
〈〈A, B+〉〉<(τ1, τ2) = i〈B+(τ2)A(τ1)〉 [13]. Let us consider first the magnon-induced su-
perconductivity. We want to compute the tunnelling current to the lowest order (∼t2) in t [14].
To that goal, we use the equations of motions of the Green functions in equation (6) to cast the
current into the form

I = et2
∑
k,q,σ

∫
dω

2π
[[	σ r (q, ω) − 	σa (q, ω)] Gσ< (k, ω)

− 	σ< (q, ω) [Gσ r (k, ω) − Gσa (k, ω)]] (7)

where

	↑µ(q, ω) = u2
q A1µ(q, ω) + v2

q A+
2µ(q, ω),

	↓µ(q, ω) = v2
q A+

1µ(q, ω) + u2
q A2µ(q, ω), µ = r, a,< .

(8)
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Here

u2
q = 1

2


1 +

εq√
ε2

q + �2
q


 , v2

q = 1 − u2
q . (9)

The expressions for the retarded/advanced Green functions are given as follows:

Gσ r/a (k, ω) = (
ω − εk ± i0+

)−1

Alr/a (q, ω) = (
ω − Elq ± i0+)−1

, l = 1, 2
(10)

and A+
lr/a(q, ω) = −A∗

la/r (q,−ω). The quasiparticle energies are

E1q = −H −
√

ε2
q + �2

q, (11)

E2q = H −
√

ε2
q + �2

q . (12)

The distribution Green function is defined as

Gσ< (k, ω) = − fFD(ω) [Gσ r (k, ω) − Gσa (k, ω)] , (13)

fFD(ω) is the Fermi–Dirac function and likewise for Al<, l = 1, 2. Next we convert the sums
over the wavevectors into integrals over the corresponding energies by introducing the density
of states for the left-hand and the right-hand side of the junction. We consider the simplest
possibility of constant density of states, that is, we do not take into account the finite band-
width effects. This choice allows us to obtain analytical results in the zero-temperature case.
The expression for the tunnelling current is obtained in the following form.
(I) If �0 � 2H

I

I0
=




π

2

(
x2

+ − x2
−
)
, 0 � eV � �0 − H

π

2

(
x2

+ − x2
−
) − f (x+), �0 − H � eV � H

π

2

(
x2

+ + x2
−
) − f (x+), H � eV � �0 + H

π

2

(
x2

+ + x2
−
) − f (x+) − f (x−), eV � �0 + H .

(14)

(II) If �0 � 2H

I

I0
=




π

2

(
x2

+ − x2
−
)
, 0 � eV � H

π

2

(
x2

+ + x2
−
)
, H � eV � �0 − H

π

2

(
x2

+ + x2
−
) − f (x+), �0 − H � eV � �0 + H

π

2

(
x2

+ + x2
−
) − f (x+) − f (x−), eV � �0 + H

(15)

where I0 = πet2ρ
(L)
N ρ

(R)
N �0, x± = (eV ± H )/�0, f (x) = x2 tan−1

√
x2 − 1 − √

x2 − 1
and ρ

(L,R)
N is the density of states in the left-hand/right-hand side of the junction. Also, we

calculated the dynamical conductance g = d I/dV . The expression for this is given by the
following.
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∆

Figure 1. The tunnelling current as a function of the applied voltage in the case of (i) magnon-
induced superconductivity for �0 = 1.5H (solid curve) and �0 = 3H (short-dashed curve); (ii)
paramagnon-induced superconductivity (long-dashed curve).

(I) If �0 � 2H

g

g0
=




π H

�0
, 0 � eV � �0 − H

π H

�0
− g(x+), �0 − H � eV � H

πeV

�0
− g(x+), H � eV � �0 + H

πeV

�0
− g(x+) − g(x−), eV � �0 + H .

(16)

(II) If �0 � 2H

g

g0
=




π H

�0
, 0 � eV � H

πeV

�0
, H � eV � �0 − H

πeV

�0
− g(x+), �0 − H � eV � �0 + H

πeV

�0
− g(x+) − g(x−), eV � �0 + H

(17)

where g0 = 2πe2t2ρ
(L)
N ρ

(R)
N and g(x) = x tan−1

√
x2 − 1.

The results for both the tunnelling current and the differential conductance are shown in
figures 1 and 2.

The most important feature of the tunnelling conductance is that it is a continuous and
smooth function of the applied voltage and does not show any discontinuities at the gap edges
that are characteristics of the tunnelling in which conventional superconductors are involved.
Also, the tunnelling current is non-zero when eV � �0. One observes that for small values
of the applied voltage I depends linearly on it, that is, the Ohm law holds. This behaviour is
attributed to the existence of a Fermi surface in this model [8]. Another important feature to
be pointed out is that the magnetization which is included in the Zeeman splitting energy H
can be measured in a tunnelling experiment. When �0 � 2H , the differential conductance
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∆

Figure 2. The differential conductance as a function of the applied voltage in the case: (i) magnon-
induced superconductivity for �0 = 1.5H (solid curve) and �0 = 3H (short-dashed curve); (ii)
paramagnon-induced superconductivity (long-dashed curve).

is constant for eV � �0 − H , the minimum is located at eV = H and the maximum is at
eV = �0 + H (figure 2, the solid curve). In the case of �0 � 2H , g exhibits ohmic behaviour
for eV � H and the two maxima are at �0 − H and �0 + H (figure 2, short-dashed curve).
Thus, for any value of the microscopic parameters one can deduce the values of both �0 and
H from the tunnelling conductance.

Let us consider now the paramagnon-induced superconductivity. In this case, the
tunnelling current is a sum of two terms I = IN + ISC where IN is the normal current due
to the unpaired band of down-spin electrons and ISC is the current of the superconducting
up-spin electrons. The explicit expressions for them are written as

IN = et2
∑
k,q

∫
dω

2π
[[D↓r (q, ω) − D↓a (q, ω)]G↓< (k, ω)

− D↓< (q, ω) [G↓r (k, ω) − G↓a (k, ω)]], (18)

and

ISC = et2
∑
k,q

∫
dω

2π
[[	r (q, ω) − 	a (q, ω)] G↑< (k, ω)

− 	< (q, ω) [G↑r (k, ω) − G↑a (k, ω)]], (19)

where

	µ(q, ω) = ũ2
q Aµ(q, ω) + ṽ2

q A+
µ(q, ω), µ = r, a,< . (20)

The retarded/advanced Green function are given by D↓r/a(q, ω) = (ω − εq↓ ± i0+)−1,
Ar/a(q, ω) = (ω− Eq ± i0+)−1 and the distribution Green functions are defined as above. The
quasiparticle energy is

Eq =
√

ε2
q↑ + �2

q . (21)

Also,

ũ2
q = 1

2

(
1 +

εq↑
Eq

)
, ṽ2

q = 1

2

(
1 − εq↑

Eq

)
. (22)
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With the same assumptions as above the tunnelling currents are obtained in the form

IN = 2I0eV/�0 (23)

ISC = 2I0

[
π

2

(
eV

�0

)2

− f

(
eV

�0

)
θ (eV − �0)

]
. (24)

Unlike the case of magnon-induced superconductivity the current does not depend on the
Zeeman splitting energy. The corresponding expression for the differential conductance is
cast into the form

g = g0

[
1 + π

eV

�0
− 2g

(
eV

�0

)
θ (eV − �0)

]
. (25)

The results for the tunnelling current and the differential conductance are shown in figures 1
and 2 (the long-dashed curve), respectively. One sees that g has no ohmic behaviour and has
only one maximum located at �0. Thus, a tunnelling experiment can very easily determine
the correct pairing mechanism in the ferromagnetic superconductors.

Point-contact tunnelling between a normal metal and superconductor is one of the best
probes for analysing the energy gap of superconductors. Measurements of tunnelling current
yield valuable information on the symmetry of the order parameter which in turn is essential
for understanding the mechanism of superconductivity. Our results differ from what we expect
for the conventional superconductors in many aspects. Perhaps the most striking difference
is the nonzero conductance inside the superconducting gap. The tunnelling conductance is a
continuous and smooth function of the applied voltage. For small values of the applied voltage,
I depends linearly on it, that is, the Ohm law holds (figure 1). The main focus in the present
paper is the evidence that the origin of this behaviour is the existence of a Fermi surface in the
superconducting phase. It was experimentally observed [4, 5] that the specific heat depends
on the temperature linearly at low temperature. This means that the superconducting state is
strongly gapless with a Fermi surface. Our theoretical prediction suggests that the tunnelling
experiment could give another independent verification of the survival of the Fermi surface in
the superconducting state.

We consider two pairing mechanisms—magnon- and paramagnon-induced superconduc-
tivity [7, 8]. In the case of magnon-induced superconductivity the differential conductance
exhibits ohmic behaviour at low voltages for any value of the microscopic parameters, and
has two extreme points which determine the gap and the Zeeman splitting. Unlike this, the
tunnelling current, in the case of paramagnon-induced superconductivity, does not depend on
the Zeeman splitting energy, the differential conductance has no ohmic behaviour, and the only
local maximum determines the gap.

The contribution of the Bogoliubov quasiparticles to the differential conductance is shown
in figure 3 (for �0 = 1.5H ) and in figure 4 (for �0 = 3H ) in the case of magnon-induced
superconductivity. From equations (11) and (12) it can easily be established that there is a gap
�0 + H in the quasiparticle energy E1q while the quasiparticle with energy E2q is a gapless
excitation with a Fermi surface [8]. As a result, the contribution of the first quasiparticle to
the differential conductance shows typical behaviour well known for gapped superconductors
(figures 3 and 4, the short-dashed curve) and all important features in g we have already
pointed out are due to the second quasiparticle (figures 3 and 4, the solid curves). Namely, the
ohmic part in the differential conductance at low voltage bias reflects the gapless nature with
a Fermi surface of this quasiparticle. The ferromagetic superconductors are anisotropic. The
different symmetries of the order parameter correspond to different anisotropies, respectively
to different Fermi surfaces. As a consequence, calculating the tunnelling current and the
differential conductance and averaging over the Fermi surface we obtain different expressions
for the different Cooper pairing mechanisms.



704 N Karchev and T Ivanov

∆

Figure 3. Bogoliubov quasiparticle contribution to the differential conductance in the case of
magnon-induced superconductivity for �0 = 1.5H : quasiparticle with energy E1q (equation (11))
(short-dashed curve) and quasiparticle with energy E2q (equation (12)) (solid curve).

∆

Figure 4. Bogoliubov quasiparticle contribution to the differential conductance in the case of
magnon-induced superconductivity for �0 = 3H : quasiparticle with energy E1q (equation (11))
(short-dashed curve) and quasiparticle with energy E2q (equation (12)) (solid curve).

It is important to compare our results with the results in the case of isotropic s-wave
superconductors. At zero magnetic field the energies of the Bogoliubov quasiparticles are
degenerate and there is only one peak in the quasiparticle density of states. Correspondingly,
there is only one peak in the differential conductance. The effect of the magnetic field is to
lift this degeneracy. The quasiparticle peak in the density of states splits into two peaks and
as a result two peaks appear in the differential conductance with each peak coming from a
quasiparticle with a given spin (up or down) [15, 16].

In the case of magnon-induced superconductivity the quasiparticle spectrum is not
degenerate too. The two extrema in the differential conductance result from a complicated
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averaging over the Fermi surface and reflect the symmetry of the superconducting order
parameter, respectively the mechanism of the superconductivity.

In the case of paramagnon-induced superconductivity there is one gapped excitation (21)
which gives the only peak in the differential conductance. The other excitation is a free spin-
down electron which is responsible for the linear in the bias voltage part of the tunnelling
current (23).

It is known that in the case of anisotropic pairing zero-energy bound states can exist [17].
They will modify the low-voltage behaviour of the differential conductance. The inclusion of
these states would require modification of our approach. The results we have obtained will be
changed at low voltages. However, the non-zero differential conductance at zero voltage is a
direct consequence of the existence of a Fermi surface in the ferromagnetic superconductors.
This behaviour will not be changed qualitatively when the zero-energy bound states are
taken into account. The rest of our findings should apply in this case because they refer
to features in the differential conductance at voltages of the order of the superconducting order
parameter. The evident difference between the tunnelling processes involving magnon-induced
superconductivity and those involving paramagnon-induced superconductivity suggests that
tunnelling experiment could be crucial for understanding the mechanism of ferromagnetic
superconductivity.

The ferromagnetic superconductivity was seen only in samples with small normal-state
residual electrical resistivity ρ0 = 2 µ� cm [3, 4]. This means that the impurity concentration
is very low. Therefore, if the impurities are taken into account they will only slightly modify
the low-voltage behaviour of the tunnelling differential conductance.

The tunnelling differential conductance in the case of s-wave superconductors in an
external magnetic field was measured long ago [15]. It shows different behaviour for different
values of the magnetic field (figure 1 in [15]), that is, the tunnelling current measurements
are sensitive to the quasiparticle spectrum of the system in the magnetic field. This fact
demonstrates that the experiments can in principle distinguish the different behaviours we
predict for the two pairing mechanisms.

Our results differ, as well, from the calculations of the tunnelling conductance in the case
when spin-triplet superconductivity of a different kind is considered [18]. This demonstrates
that by means of tunnelling experiments the symmetry of different p-wave superconductors
can be established. This is additional support for our efforts to distinguish the magnon and
paramagnon mechanisms of FM superconductivity.
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